Symbolic Reasoning

Compiling Thought: Building a Prompt Compiler for Self-Improving AI

Compiling Thought: Building a Prompt Compiler for Self-Improving AI

How to design a pipeline that turns vague goals into smart prompts

🧪 Summary

Why spend hours engineering prompts when AI can optimize its own instructions. This blog post introduces a novel approach toward creating a self-improving AI by treating prompts as programs. Traditional AI systems often rely on static instructions rigid and limited in adaptability. Here, we present a different perspective: viewing the Large Language Model (LLM) as a prompt compiler capable of dynamically transforming raw instructions into optimized prompts through iterative cycles of decomposition, evaluation, and intelligent reassembly.

Learning to Learn: A LATS-Based Framework for Self-Aware AI Pipelines

Learning to Learn: A LATS-Based Framework for Self-Aware AI Pipelines

📖 Summary

In this post, we introduce the LATSAgent, an implementation of LATS: Language Agent Tree Search Unifies Reasoning.. within the co_ai framework. Unlike prior agents that followed a single reasoning chain, this agent explores multiple reasoning paths in parallel, evaluates them using multidimensional scoring, and learns symbolic refinements over time. This is our most complete integration yet of search, simulation, scoring, and symbolic tuning bringing together all of our previous work on sharpening, pipeline reflection, and symbolic rules into a unified, intelligent reasoning loop.

Programming Intelligence: Using Symbolic Rules to Steer and Evolve AI

Programming Intelligence: Using Symbolic Rules to Steer and Evolve AI

🧪 Summary

“What if AI systems could learn how to improve themselves not just at the level of weights or prompts, but at the level of strategy itself? In this post, we show how to build such a system, powered by symbolic rules and reflection.

The paper Symbolic Agents: Symbolic Learning Enables Self-Evolving Agents introduces a framework where symbolic rules guide, evaluate, and evolve agent behavior.