Machine Learning

Episteme: Distilling Knowledge into AI

Episteme: Distilling Knowledge into AI

🚀 Summary

When you can measure what you are speaking about… you know something about it; but when you cannot measure it… your knowledge is of a meagre and unsatisfactory kind. Lord Kelvin

Remember that time you spent an hour with an AI, and in one perfect response, it solved a problem you’d been stuck on for weeks? Where is that answer now? Lost in a scroll of chat history, a fleeting moment of brilliance that vanished as quickly as it appeared. This post is about how to make that moment permanent, and turn it into an intelligence that amplifies everything you do.

From Photo Albums to Movies: Teaching AI to See Its Own Progress

From Photo Albums to Movies: Teaching AI to See Its Own Progress

🥱 TLDR

This post details the implementation of:

The core idea is to move beyond static, single-point feedback to a richer, more dynamic form of learning:

Thoughts of Algorithms

Thoughts of Algorithms

How a self-evolving AI learns to reflect, score, and rewrite its own reasoning

đź§Ş Summary

What if an AI could think not just solve problems, but reevaluate its beliefs in the face of new information?

In this post, we introduce a system that does exactly that. At the core of our pipeline is a lightweight scoring model called MR.Q, responsible for evaluating ideas and choosing the best ones. But when it encounters a new domain, a new goal, or a shift in task format, it doesn’t freeze it adapts.

Mastering Prompt Engineering: A Practical Guide

Summary

This post provides a comprehensive guide to prompt engineering, the art of crafting effective inputs for Large Language Models (LLMs). Mastering prompt engineering is crucial for maximizing the potential of LLMs and achieving desired results.

Effective prompting is the easiest way to enhance your experience with Large Language Models (LLMs).

The prompts we make are our interface to LLMs. This is how we communicate with them. This is why it is important to understand how to do it well.