Reward Modeling

Self-Improving AI: A System That Learns, Validates, and Retrains Itself

Self-Improving AI: A System That Learns, Validates, and Retrains Itself

🤖 The Static AI Trap

Today’s AI systems are frozen in time: trained once, deployed forever. Yet the real world never stops evolving. Goals shift overnight. New research upends old truths. Context transforms without warning.

What if your AI could wake up?

In this post, we engineer an intelligence that teaches itself a system that continuously learns from the web, audits its own judgments, and retrains itself when confidence wavers.

Thoughts of Algorithms

Thoughts of Algorithms

How a self-evolving AI learns to reflect, score, and rewrite its own reasoning

🧪 Summary

What if an AI could think not just solve problems, but reevaluate its beliefs in the face of new information?

In this post, we introduce a system that does exactly that. At the core of our pipeline is a lightweight scoring model called MR.Q, responsible for evaluating ideas and choosing the best ones. But when it encounters a new domain, a new goal, or a shift in task format, it doesn’t freeze it adapts.

Document Intelligence: Turning Documents into Structured Knowledge

Document Intelligence: Turning Documents into Structured Knowledge

📖 Summary

Imagine drowning in a sea of research papers, each holding a fragment of the knowledge you need for your next breakthrough. How does an AI system, striving for self-improvement, navigate this information overload to find precisely what it needs? This is the core challenge our Document Intelligence pipeline addresses, transforming chaotic documents into organized, searchable knowledge.

In this post we combine insights from Paper2Poster: Towards Multimodal Poster Automation from Scientific Papers and Domain2Vec: Vectorizing Datasets to Find the Optimal Data Mixture without Training to build an AI document profiler that transforms unstructured papers into structured, searchable knowledge graphs.

Dimensions of Thought: A Smarter Way to Evaluate AI

Dimensions of Thought: A Smarter Way to Evaluate AI

📖 Summary

This post introduces a multidimensional reward modeling pipeline built on top of the CO_AI framework. It covers:

  • ✅ Structured Evaluation Setup How to define custom evaluation dimensions using YAML or database-backed rubrics.

  • 🧠 Automated Scoring with LLMs Using the ScoreEvaluator to produce structured, rationale-backed scores for each dimension.

  • 🧮 Embedding-Based Hypothesis Indexing Efficiently embedding hypotheses and comparing them for contrastive learning using similarity.

  • 🔄 Contrast Pair Generation Creating training pairs where one hypothesis outperforms another on a given dimension.

Programming Intelligence: Using Symbolic Rules to Steer and Evolve AI

Programming Intelligence: Using Symbolic Rules to Steer and Evolve AI

🧪 Summary

“What if AI systems could learn how to improve themselves not just at the level of weights or prompts, but at the level of strategy itself? In this post, we show how to build such a system, powered by symbolic rules and reflection.

The paper Symbolic Agents: Symbolic Learning Enables Self-Evolving Agents introduces a framework where symbolic rules guide, evaluate, and evolve agent behavior.

Adaptive Reasoning with ARM: Teaching AI the Right Way to Think

Adaptive Reasoning with ARM: Teaching AI the Right Way to Think

Summary

Chain-of-thought is powerful, but which chain? Short explanations work for easy tasks, long reflections help on hard ones, and code sometimes beats them both. What if your model could adaptively pick the best strategy, per task, and improve as it learns?

The Adaptive Reasoning Model (ARM) is a framework for teaching language models how to choose the right reasoning format direct answers, chain-of-thoughts, or code depending on the task. It works by evaluating responses, scoring them based on rarity, conciseness, and difficulty alignment, and then updating model behavior over time.