Symbolic Learning

Epistemic Engines: Building Reflective Minds with Belief Cartridges and In-Context Learning

Epistemic Engines: Building Reflective Minds with Belief Cartridges and In-Context Learning

🔍 Summary: Building the Engine of Understanding

This is not a finished story. It’s the beginning of one and likely the most ambitious post we’ve written yet.

We’re venturing into new ground: designing epistemic engines modular, evolving AI systems that don’t just respond to prompts, but build understanding, accumulate beliefs, and refine themselves through In-Context Learning.

In this series, we’ll construct a self-contained system separate from our core framework Stephanie that runs its own pipelines, evaluates its own beliefs, and continuously improves through repeated encounters with new data. Its core memory will be made of cartridges: scored, structured markdown artifacts distilled from documents, papers, and the web. These cartridges form a kind of belief substrate that guides the system’s judgments.

Compiling Thought: Building a Prompt Compiler for Self-Improving AI

Compiling Thought: Building a Prompt Compiler for Self-Improving AI

How to design a pipeline that turns vague goals into smart prompts

đź§Ş Summary

Why spend hours engineering prompts when AI can optimize its own instructions. This blog post introduces a novel approach toward creating a self-improving AI by treating prompts as programs. Traditional AI systems often rely on static instructions rigid and limited in adaptability. Here, we present a different perspective: viewing the Large Language Model (LLM) as a prompt compiler capable of dynamically transforming raw instructions into optimized prompts through iterative cycles of decomposition, evaluation, and intelligent reassembly.

Thoughts of Algorithms

Thoughts of Algorithms

How a self-evolving AI learns to reflect, score, and rewrite its own reasoning

đź§Ş Summary

What if an AI could think not just solve problems, but reevaluate its beliefs in the face of new information?

In this post, we introduce a system that does exactly that. At the core of our pipeline is a lightweight scoring model called MR.Q, responsible for evaluating ideas and choosing the best ones. But when it encounters a new domain, a new goal, or a shift in task format, it doesn’t freeze it adapts.

Learning to Learn: A LATS-Based Framework for Self-Aware AI Pipelines

Learning to Learn: A LATS-Based Framework for Self-Aware AI Pipelines

đź“– Summary

In this post, we introduce the LATSAgent, an implementation of LATS: Language Agent Tree Search Unifies Reasoning.. within the co_ai framework. Unlike prior agents that followed a single reasoning chain, this agent explores multiple reasoning paths in parallel, evaluates them using multidimensional scoring, and learns symbolic refinements over time. This is our most complete integration yet of search, simulation, scoring, and symbolic tuning bringing together all of our previous work on sharpening, pipeline reflection, and symbolic rules into a unified, intelligent reasoning loop.

Programming Intelligence: Using Symbolic Rules to Steer and Evolve AI

Programming Intelligence: Using Symbolic Rules to Steer and Evolve AI

đź§Ş Summary

“What if AI systems could learn how to improve themselves not just at the level of weights or prompts, but at the level of strategy itself? In this post, we show how to build such a system, powered by symbolic rules and reflection.

The paper Symbolic Agents: Symbolic Learning Enables Self-Evolving Agents introduces a framework where symbolic rules guide, evaluate, and evolve agent behavior.