Knowledge Representation

Stephanie's Secret: The Dawn of Reflective AI

Stephanie's Secret: The Dawn of Reflective AI

🌅 Introduction: The Dawn of Self-Reflective AI

What if your AI could not only answer questions but also question itself about those answers? Not with programmed doubt, but with genuine self-awareness recognizing when it’s uncertain, analyzing why it made a mistake, and systematically improving its own reasoning process? This isn’t science fiction. Today, we’re unveiling the first working implementation of an AI that doesn’t just think, but learns how to think better. It’s a bit cold here

The Shape of Thought: Exploring Embedding Strategies with Ollama, HF, and H-Net

The Shape of Thought: Exploring Embedding Strategies with Ollama, HF, and H-Net

🔍 Summary

Stephanie, a self-improving system, is built on a powerful belief:

If an AI can evaluate its own understanding, it can reshape itself.

This principle fuels every part of her design from embedding to scoring to tuning.

At the heart of this system is a layered reasoning pipeline:

  • MRQ offers directional, reinforcement-style feedback.
  • EBT provides uncertainty-aware judgments and convergence guidance.
  • SVM delivers fast, efficient evaluations for grounded comparisons.

These models form Stephanie’s subconscious engine the part of her mind that runs beneath explicit thought, constantly shaping her understanding. But like any subconscious, its clarity depends on how raw experience is represented.

Epistemic Engines: Building Reflective Minds with Belief Cartridges and In-Context Learning

Epistemic Engines: Building Reflective Minds with Belief Cartridges and In-Context Learning

🔍 Summary: Building the Engine of Understanding

This is not a finished story. It’s the beginning of one and likely the most ambitious post we’ve written yet.

We’re venturing into new ground: designing epistemic engines modular, evolving AI systems that don’t just respond to prompts, but build understanding, accumulate beliefs, and refine themselves through In-Context Learning.

In this series, we’ll construct a self-contained system separate from our core framework Stephanie that runs its own pipelines, evaluates its own beliefs, and continuously improves through repeated encounters with new data. Its core memory will be made of cartridges: scored, structured markdown artifacts distilled from documents, papers, and the web. These cartridges form a kind of belief substrate that guides the system’s judgments.